
Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering

Eric S. K. Yu
Faculty of Information Studies, University of Toronto

Toronto, Ontario, Canada M5S 3G6
eric.yu@utoronto.ca

Abstract
Requirements are usually understood as stating what

a system is supposed to do, as opposed to how it should
do it. Howevel; understanding the organizational con-
text and rationales (the “Whys”) that lead up to systems
requirements can be just as important for the ongoing suc-
cess of the system. Requirements modelling techniques
can be used to help deal with the knowledge and reason-
ing needed in this earlier phase of requirements engineer-
ing. Howevel; most existing requirements techniques are
intended more for the later phase of requirements engi-
neering, which focuses on completeness, consistency, and
automated veriJcation of requirements. In contrast, the
early phase aims to model and analyze stakeholder inter-
ests and how they might be addressed, or compromised, by
various system-and-environment alternatives. This paper
argues, therefore, that a direrent kind of modelling and
reasoning support is needed for the early phase. An out-
line of the i* framework is given as an example of a step
in this direction. Meeting scheduling is used as a domain
example.

1 Introduction
Requirements engineering (RE) is receiving increasing

attention as it is generally acknowledged that the early
stages of the system development life cycle are crucial
to the successful development and subsequent deployment
and ongoing evolution of the system. As computer systems
play increasingly important roles in organizations, it seems
there is a need to pay more attention to the early stages of
requirements engineering itself (e.g., [6]).

Much of requirements engineering research has taken
as starting point the initial requirements statements, which
express customer’s wishes about what the system should
do. Initial requirements are often ambiguous, incomplete,
inconsistent, and usually expressed informally. Many re-
quirements languages and frameworks have been proposed
for helping make requirements precise, complete, and con-
sistent (e.g., [4] [191 [131 [15]). Modelling techniques
(from boxes-and-arrows diagrams to logical formalisms)
with varying degrees of analytical support are offered to
assist requirements engineers in these tasks. The objec-
tive, in these “late-phase’’ requirements engineering tasks,
is to produce a requirements document to pass on (“down-
stream”) to the developers, so that the resulting system

would be adequately specified and constrained, often in a
contractual setting.

Considerably less attention has been given to support-
ing the activities that precede the formulation of the initial
requirements. These “early-phase’’ requirements engineer-
ing activities include those that consider how the intended
system would meet organizational goals, why the system is
needed, what alternatives might exist, what the implications
of the alternatives are for various stakeholders, and how the
stakeholders’ interests and concerns might be addressed.
The emphasis here is on understanding the “whys” that un-
derlie system requirements [37], rather than on the precise
and detailed specification of “what” the system should do.

This earlier phase of the requirements process can be
just as important as that of refining initial requirements
to a requirements specification, at least for the following
reasons:

System development involves a great many assump-
tions about the embedding environment and task do-
main. As discovered in empirical studies (e.g., [ll]),
poor understanding of the domain is a primary cause
of project failure. To have a deep understanding about
a domain, one needs to understand the interests and
priorities and abilities of various actors and players, in
addition to having a good grasp of the domain concepts
and facts.

Users need help in coming up with initial require-
ments in the first place. As technical systems increase
in diversity and complexity, the number of technical
alternatives and organizational configurations made
possible by them constitute a vast space of options.
A systematic framework is needed to help developers
understand what users want and to help users under-
stand what technical systems can do. Many systems
that are technically sound have failed to address real
needs (e.g., [21]).

Systems personnel are increasingly expected to con-
tribute to business process redesign. Instead of au-
tomating well-established business processes, systems
are now viewed as “enablers” for innovative business
solutions (e.g., [22]). More than ever before, require-
ments engineers need to relate systems to business and
organizational objectives.

1090-‘705X/97 $5.00 0 1997 IEEE
226

Dealing with change is one of the major problems
facing software engineering today. Having a repre-
sentation of organizational issues and rationales in
requirements models would allow software changes
to be traced all the way to the originating source -
the organizational changes that leads to requirements
changes [181.

0 Having well-organized bodies of organizational and
strategic knowledge would allow such knowledge to
be shared across domains at this high level, deepening
understanding about relationships among domains.
This would also facilitate the sharing and reuse of
software (and other types of knowledge) across these
domains.

0 As more and more systems in organizations intercon-
nect and interoperate, it is increasingly important to
understand how systems cooperate (with each other
and with human agents) to contribute to organiza-
tional goals. Early phase requirements models that
deal with organizational goals and stakeholder inter-
ests cut across multiple systems and can provide a
view of the cooperation among systems within an or-
ganizational context.

Support for early-phase RE. Early-phase RE activities
have traditionally been done informally, and without much
tool support. As the complexity of the problem domain
increases, it is evident that tool support will be needed
to leverage the efforts of the requirements engineer. A
considerable body of knowledge would be built up during
early-phase RE. This knowledge would be used to sup-
porting reasoning about organizational objectives, system-
and-environment alternatives, implications for stakehold-
ers, etc. It is important to retain and maintain this body of
knowledge in order to guide system development, and to
deal with change throughout the system's life time.

A number of frameworks have been proposed to repre-
sent knowledge and to support reasoning in requirements
engineering (e.g., [19] [131 [27] [17] [121 [51 1351). How-
ever, these frameworks have not distinguished early-phase
from late-phase RE. The question then is: Are there mod-
elling and reasoning support needs that are especially rel-
evant to early-phase RE? If there are specific needs, can
these be met by adapting existing frameworks?

Most existing requirements techniques and frameworks
are intended more for the later phase of requirements engi-
neering, which focuses on completeness, consistency, and
automated verification of requirements. In contrast, the
early phase aims to model and analyze stakeholder inter-
ests and how they might be addressed, or compromised, by
various system-and-environment alternatives. In this paper
it is argued that, because early-phase RE activities have ob-
jectives and presuppositions that are different from those of
the late phase, it would be appropriate to provide different
modelling and reasoning support for the two phases. Nev-
ertheless, a number of recently developed RE techniques,
such as agent- and goal-oriented techniques (e.g., [161 [141
[17] [12] [7]) are relevant, and may be adapted for early-
phase RE.

The recently proposed i* framework [39] is used in this
paper as an example to illustrate the kinds of modelling fea-
tures and reasoning capabilities that might be appropriate
for early-phase requirements engineering. It introduces an
ontology and reasoning support features that are substan-
tially different from those intended for late-phase RE (e.g.,
as developed in [151).

Section 2 reviews the i* framework and outlines some of
its features, using meeting scheduling as a domain example.
Section 3 discusses, in light of the experience of developing
i*, the modelling and support requirements for early-phase
requirements engineering. Section 4 reviews related work.
Section 5 draws some conclusions from the discussions and
identifies future work.

2 The i* modelling framework for early-
phase requirements engineering

The i* framework' was developed for modelling and
reasoning about organizational environments and their in-
formation systems [39]. It consists of two main modelling
components. The Strategic Dependency (SD) model is used
to describe the dependency relationships among various ac-
tors in an organizational context. The Strategic Rationale
(SR) model is used to describe stakeholder interests and
concerns, and how they might be addressed by various
configurations of systems and environments. The frame-
work builds on a knowledge representation approach to
information system development [27]. This section offers
an overview of some of the features of i*, using primarily
a graphical representation. A more formal presentation of
the framework appears in [39]. The i* framework has also
been applied to business process modelling and redesign
[41] and to software process modelling [38].

The central concept in i* is that of the intentional ac-
tor [36]. Organizational actors are viewed as having in-
tentional properties such as goals, beliefs, abilities, and
commitments. Actors depend on each other for goals to
be achieved, tasks to be performed, and resources to be
furnished. By depending on others, an actor may be able
to achieve goals that are difficult or impossible to achieve
on its own. On the other hand, an actor becomes vulner-
able if the depended-on actors do not deliver. Actors are
strategic in the sense that they are concerned about opportu-
nities and vulnerabilities, and seek rearrangements of their
environments that would better serve their interests.

2.1 Modelling the embedding of systems in orga-
nizational environments - the Strategic De-
pendency model

Consider a computer-based meeting scheduler for sup-
porting the setting up of meetings3. The requirements
might state that for each meeting request, the meeting

'The name i* refers to the notion of distributed intentionality which

2An early version of the framework was presented in [361.
3The example used in this paper is a simplified version of the one

underlies the framework.

provided in [34].

227

scheduler should try to determine a meeting date and loca-
tion so that most of the intended participants will partici-
pate effectively. The system would find dates and locations
that are as convenient as possible. The meeting initiator
would ask all potential participants for information about
their availability to meet during a date range, based on their
personal agendas. This includes an exclusion set - dates
on which a participant cannot attend the meeting, and a
preference set - dates preferred by the participant for the
meeting. The meeting scheduler comes up with a proposed
date. The date must not be one of the exclusion dates, and
should ideally belong to as many preference sets as pos-
sible. Participants would agree to a meeting date once an
acceptable date has been found.

niques have been developed to help refine this kind of re-
quirements statements to achieve better precision, com-
Pleteness, and consistency. However, to develop systems
that will truly meet the real needs of an organization, one
often needs to have a deeper understanding of how the
system is embedded in the organizational environment.

For example, the requirements engineer, before proceed-
ing to refine the initial requirements, might do well to in-
quire:

Rexovrce Dependuleney

Task Dependency

0 Goal Dependency

Many requirements engineering frameworks and tech-

Figure 1 : Strategic Dependency model for meeting
scheduling, without computer-based scheduler

explicit in the SD model), or at least not succeed to the
degree desired. This is the reason for wanting to schedule
the meeting in advance. TO schedule meetings, the initiator
depends on participants to provide information about their
availability - in terms of a set of exclusion dates and ure-

Why is it necessary to schedule meetings ahead of

Why does the meeting initiator need to ask participants

0 Why is a computer-based meeting scheduler desired?

Is confirmation via the computer-based scheduler suf-

0 Are important participants treated differently? If so,

time?

for exclusion dates and preferred dates?

And whose interests does it serve?

ficient? If not, why not?

why?

Most requirements models are ill-equipped to help an-
swer such questions. They tend to focus on the “what”
rather than the “why”. Having answers to these “why”
questions are important not only to help develop successful
systems in the first instance, but also to facilitate the de-
velopment of cooperation with other systems (e.g., project
management systems and other team coordination “group-
ware” for which meeting information may be relevant), as
well as the ongoing evolution of these systems.

To provide a deeper level of understanding about how the
proposed meeting scheduler might be embedded in the or-
ganizational environment, the Strategic Dependency model
focuses on the intentional relationships among organiza-
tional actors. By noting the dependencies that actors have
on one another, one can obtain a better understanding of
the “whys”.

Consider first the organizational configuration before the
proposed system is introduced (Figure 1). The meeting ini-
tiator depends on meeting participants p to attend meeting
m. If some participant does not attend the meeting, the
meeting initiator may fail to achieve some goal (not made

ferred dates. (For simplicity, we do not separately con6der
time of day or location.) To arrive at an agreeable date, par-
ticipants depend on the initiator for date proposals. Once
proposed, the initiator depends on participants to indicate
whether they agree with the date. For important partici-
pants, the meeting initiator depends critically (marked with
an “X’ in the graphical notation) on their attendance, and
thus also on their assurance that they will attend.

Dependency types are used to differentiate among the
kinds of relationships between depender and dependee, in-
volving different types of freedom and constraint. The
meeting initiator’s dependency on participant’s attendance
at the meeting (AttendsMeet ing(p,m)) is a goal depen-
dency. It is up to the participant how to attain that goal. An
agreement on a proposed date Agreement (m,p) is mod-
elled as a resource dependency. This means that the par-
ticipant is expected only to give an agreement. If there is
no agreement, it is the initiator who has to find other dates
(do problem solving). For an important participant, the
initiator critically depends on that participant’s presence.
The initiator wants the latter’s attendance to be assured
(Assured [AttendsMeeting(p ,m>]). This is modelled
as a softgoal dependency. It is up to the depender to decide
what measures are enough for him to be assured, e.g., a tele-
phone confirmation. These types of relationships cannot be
expressed or distinguished in non-intentional models that
are used in most existing requirements modelling frame-
works.

Figure 2 shows an SD model of the meeting schedul-
ing setting with a computer-based meeting scheduler. The
meeting initiator delegates much of the work of meeting
scheduling to the meeting scheduler. The initiator no
longer needs to be bothered with collecting availability in-
formation from participants, or to obtain agreements about
proposed dates from them. The meeting scheduler also
determines what are the acceptable dates, given the avail-

228

/- \.

Figure 2:
scheduling with computer-based scheduler

Strategic Dependency model for meeting

ability information. The meeting initiator does not care
how the scheduler does this, as longer as the acceptable
dates are found. This is reflected in the goal dependency of
Meet ingBeScheduled from the initiator to the scheduler.
The scheduler expects the meeting initiator to enter the date
range by following a specific procedure. This is modelled
via a task dependency.

Note that it is still the meeting initiator who depends
on participants to attend the meeting. It is the meeting
initiator (not the meeting scheduler) who has a stake in
having participants attend the meeting. Assurance from
important participants that they will attend the meeting is
therefore not delegated to the scheduler, but retained as a
dependency from meeting initiator to important participant.

The SD model models the meeting scheduling process in
terms of intentional relationships among agents, instead of
the flow of entities among activities. This allows analysis
of opportunity and vulnerability. For example, the ability
of a computer-based meeting scheduler to achieve the goal
of Meet ingBeScheduledrepresents an opportunity for the
meeting initiator not to have to achieve this goal himself.
On the other hand, the meeting initiator would become vul-
nerable to the failure of the meeting scheduler in achieving
this goal.

2.2 Modelling stakeholder interests and ratio-
nales - the Strategic Rationale model

The Strategic Dependency model provides one level of
abstraction for describing organizational environments and
their embedded information systems. It shows external
(but nevertheless intentional) relationships among actors,
while hiding the intentional constructs within each actor.
As illustrated in the preceding section, the SD model can
be useful in helping understand organizational and systems
configurations as they exist, or as proposed new configura-
tions.

During early-phase RE, however, one would also like to
have more explicit representation and reasoning about ac-
tors’ interests, and how these interests might be addressed

2

or impacted by different system-and-environment configu-
rations - existing or proposed.

In the i* framework, the Strategic Rationale model pro-
vides a more detailed level of modelling by looking “in-
side” actors to model internal intentional relationships. In-
tentional elements (goals, tasks, resources, and softgoals)
appear in the SR model not only as external dependencies,
but also as internal elements linked by means-ends relation-
ships and task-decompositions (Figure 3). The SR model
in Figure 3 thus elaborates on the relationships between the
meeting initiator and meeting participant as depicted in the
SD model of Figure 1.

For example, for the meeting initiator, an internal goal
is that of MeetingBeScheduled. This goal can be met
(represented via a means-ends link) by scheduling meet-
ings in a certain way, consisting of (represented via task-
decomposition links): obtaining availability dates from par-
ticipants, finding a suitable date (and time) slot, proposing
a meeting date, and obtaining agreement from the partici-
pants.

These elements of the ScheduleMeeting task are rep-
resented as subgoals, subtasks, or resources depending on
the type of freedom of choice as to how to accomplish them
(analogous to the SD model). Thus FindSuitableSlot,
being a subgoal, indicates that it can be achieved in dif-
ferent ways. On the other hand, ObtainAvailDates and
ObtainAgreement refer to specific ways of accomplish-
ing these tasks. Similarly, Meet ingBeScheduled, being
represented as a goal, indicates that the meeting initiator
believes that there can be more than one way to achieve it
(to be discussed in section 2.4, Figure 4).

Meet ingBeScheduled is itself an element of the
higher-level task of organizing a meeting. Other subgoals
under that task might include equipment be ordered, or that
reminders be sent (not shown). This task has two addi-
tional elements which specify that the organizing of meet-
ings should be done quickly and not involve inordinate
amounts of effort. These qualitative criteria are modelled
as softgoals. These would be used to evaluate (and also
to help identify) alternative means for achieving ends. In
this example, we note that the existing way of scheduling
meetings is viewed as contributing negatively towards the
Quick and LowEf f ort softgoals.

On the side of the meeting participants, they are ex-
pected to do their part in arranging the meeting, and then
to attend the meeting. For the participant, arranging the
meeting consists primarily of arriving at an agreeable date.
This requires them to supply availability information to the
meeting initiator, and then to agree to the proposed dates.
Participants want selected meeting times to be convenient,
and want meeting arranging activities not to present too
many interruptions.

The SR model thus provides a way of modelling stake-
holder interests, and how they might be met, and the stake-
holders evaluation of various alternatives with respect to
their interests. Task-decomposition links provide a hierar-
chical description of intentional elements that make up a
routine. The means-ends links in the SR provides under-
standing about why an actor would engage in some tasks,

129

Figure 3: A Strategic Rationale model for meeting scheduling, before considering computer-based meeting scheduler

pursue a goal, need a resource, or want a softgoal. From the
softgoals, one can tell why one alternative may be chosen
over others. For example, availability information in the
form of exclusion sets and preferred sets are collected so
as to minimize the number of rounds and thus to minimize
interruption to participants.

2.3 Supporting analysis during early-phase RE

While requirements analysis traditionally aims to iden-
tify and eliminate incompleteness, inconsistencies, and am-
biguities in requirements specifications, the emphasis in
early-phase RE is instead on helping stakeholders gain bet-
ter understanding of the various possibilities for using in-
formation systems in their organization, and of the impli-
cations of different alternatives. The i* models offer a
number of levels of analysis, in terms of ability, workubil-
ity, viability and believability. These are detailed in [39]
and briefly outlined here.

When a meeting initiator has a routine to organize a
meeting, we say that he is able to organize a meeting. An
actor who is able to organize one type of meeting (say, a
project group meeting) is not necessarily able to organize
another type of meeting (e.g., the annual general meeting
for the corporation). One needs to know what subtask,
subgoals, resources are required, and what softgoals are
pertinent.

Given a routine, one can analyze it for workability and
viability. Organizing meeting is workable if there is a
workable routine for doing so. To determine workability,
one needs to look at the workability of each element - for
example, that the meeting initiator can obtaining availabil-
ity information from participants, can find agreeable dates,
and can obtain agreements from participants. If the work-

ability of an element cannot be judged primitively by the
actor, then it needs to be further reduced. If the subgoal
FindSuitableSlot is not primitively workable, it will
need to be elaborated in terms of a particular way for achiev-
ing it. For example, one possible means for achieving it
is to do an intersection of the availability information from
all participants. If this task is judged to be workable, then
the FindSuitableSlot goal node would be workable. A
task can be workable by way of external dependencies on
other actors. The workability of ObtainAvailDates and
ObtainAgreement are evaluated in terms of the workabil-
ity of the commitment of meeting participants to provides
availability information and agreement. A more detailed
characterization of these concepts are given in [39].

A routine that is workable is not necessarily viable. Al-
though computing intersection of time slots by hand is pos-
sible, it is slow and error-prone. Potentially good slots may
be missed. When softgoals are not satisficed, the routine
is not viable. Note that a routine which is not viable from
one actor’s perspective may be viable from another actor’s
perspective. For example, the existing way of arranging
for meetings may be viable for participants, if the resulting
meeting dates are convenient, and the meeting arrangement
efforts do not involve too much interruption of work.

The assessment of workability and viability is based on
many beliefs and assumptions. These can be provided as
justifications for the assessment. The believability of the
rationale network can be analyzed by checking the network
of justifications for the beliefs. For example, the argument
that “finding agreeable dates by merging available dates”
is workable may be justified with the assertion that the
meeting initiator has been doing it this way for years, and
it works. The belief that meeting participants will supply
availability information and agree to meeting dates may be

230

\
\
I
I
I
I
I
I
/
/

e Means-sndslink

Figure 4: Strategic Rationale model for a computer-supported meeting scheduling configuration

justified by the belief that it is in their own interests to do
so (e.g., programmers who want their code to pass a re-
view). The evaluation of these goal graphs (or justification
networks) is supported by graph propagation algorithms
following a qualitative reasoning framework [8] [42].

2.4 Supporting design during early-phase RE
During early-phase RE, the requirements engineer as-

sists stakeholders in identifying system-and-environment
configurations that meet their needs. This is a process of
design on a higher level than the design of the technical
system per se. In analysis, alternatives are evaluated with
respect to goals. In design, goals can be used to help gen-
erate potential solutions systematically.

In i*, the SR model allows us to raise ability, workabil-
ity, and viability as issues that need to be addressed. Using
means-ends reasoning, these issues can be addressed sys-
tematically, resulting in new configurations that are then to
be evaluated and compared. Means-ends rules that encode
knowhow in the domain can be used to suggest possible al-
ternatives. Issues and stakeholders that are cross-impacted
may be discovered during this process, and can be raised
so that trade-offs can be made. Issues are settled when
they are deemed to adequately addressed by stakeholders.
Once settled, one can then proceed from the descriptive
model of the i* framework to a prescriptive model that
would serve as the requirements specification for systems
de~elopment.~ Believability can also be raised as an issue,
so that assumptions would be justified.

In analyzing the SR model of Figure 3, it is
found that the meeting initiator is dissatisfied with the

40ne approach to this is described in [40].

amount of effort needed to schedule a meeting, and
how quickly a meeting can be scheduled. These are
raised as the issues Quick [MeetingScheduling] and
LowEf f ort [MeetingScheduling] .

Since the meeting initiator’s existing routine for schedul-
ing meetings is deemed unviable, one would need to look
for new routines. This is done by raising the meeting initia-
tor’s ability to schedule meetings as an issue. To address
this issue, one could try to come up with solutions without
special assistance, or one could look up rules (in a knowl-
edge base) that may be applicable. Suppose a rule is found
whose purpose is MeetingBeScheduled and whose how
attribute is LetSchedulerScheduleMeet ing.

Class CanLetSchedulerScheduleMeeting IN Rule WITH
purpose

how

applicabilitycond

ms: MeetingBeScheduled

ssm: LetSchedulerScheduleMeeting

platform: HasAppropriatePlatform(team,
platf o m , scheduler)

END

This represents knowledge that the initiator has about
software scheduler systems, their abilities, and their plat-
form requirements. The rule helps discover that the meet-
ing initiator can delegate the subgoal of meeting scheduling
to the (computer-based) meeting scheduler. This consti-
tutes a routine for the meeting initiator.

Using a meeting scheduler, however, requires partici-

23 1

pants to enter availability information in a particular for-
mat. This is modelled as a tusk dependency on participants
(an SD link). A routine that provides for this is sought in
the participant. Again, rules may be used to assist in this
search.

When new configurations are proposed, they may bring
in additional issues. The new alternatives may have as-
sociated softgoals. The discovery of these softgoals can
also be assisted with means-ends rules. For example, us-
ing computer-based meeting scheduling may be discov-
ered to be negative in terms of medium richness and user-
friendliness. These in turn have implications for the effort
involved for the participant, and the quality of the proposed
dates. These newly raised issues also need to be addressed.
Once new routines have been identified, they are analyzed
for workability and viability. Further routines are searched
for until workable and viable ones are found.

3 The modelling and reasoning support
needs of early-phase RE

In the preceding section, the i* framework was outlined
in order to illustrate the kind of modelling and reasoning
support that would be useful during the early phase of re-
quirements engineering. This section summarizes and dis-
cusses these modelling and support needs in more general
terms, drawing from the experience of the i* framework.

Knowledge representation and reasoning. Although
the example in the preceding section relies primarily on
informal graphical notations, it is clear that a realistically-
sized application domain would involve large numbers of
concepts and relationships. A more formal knowledge rep-
resentation scheme would be needed to support modelling,
analysis, and design activities. Maintaining a knowledge
base of the knowledge collected and used during early-
phase RE is also crucial in order to reap benefits for sup-
porting ongoing evolution (e.g., [SI), and for reuse across
related domains.

Many of the knowledge-based techniques developed for
other phases of software engineering are also applicable
here. For example, knowledge structuring mechanisms
such as classification, generalization, aggregation, and time
[20] are equally relevant in early-phase as in late-phase RE.
On the other hand, early-phase RE has certain needs that
are quite distinct from late-phase RE.

Degree of formality. While representing knowledge for-
mally has the advantage of amenability to computer-based
tool support, the nature of the early-phase suggests that
formality should be used judiciously. The early-phase RE
process is likely to be a highly interactive one, with the
stakeholders as the source of information as well as the
decision maker. The requirements engineer acts primarily
in a supporting role. The degree of formality for a sup-
port framework therefore needs to reflect this relationship.
Use of knowledge representation can facilitate knowledge
management and reasoning. However, one should not try
to over formalize, as one may compromise the style of
reasoning needed.

One approach is to introduce weaker constructs, such
as softgoals, which requires judgemental inputs from time
to time in the reasoning process, but which can be struc-
tured and managed nonetheless within the overall knowl-
edge base [7] [39]. The notion of softgoal draws on the
concept of satisficing [33], which refers to finding solu-
tions that are “good enough”.

Incorporating intentionality. One of the key needs in
dealing with the subject matter in the early phase seems to
be the incorporation of the concept of the intentional actor
into the ontology. Without intentional concepts such as
goals, one cannot easily deal with the “why” dimension in
requirements.

A number of requirements engineering frameworks have
introduced goal-oriented and agent-oriented techniques
(e.g., [16] [14] [I71 [12] [7]). In adapting these techniques
for early-phase RE, one needs to recognize that the focus
during the early phase is on modelling (i.e., describing) the
intentionality of the stakeholders and players in the orga-
nizational environment. When new alternatives are being
sought (the “design” component in early phase RE), it is
the intentionality of the stakeholders that are being exer-
cised. The requirements engineer is helping stakeholders
find solutions to their problems. The decisions rests with
the stakeholders.

In most goal-oriented frameworks in RE, the intention-
ality is assumed to be under the control of the requirements
engineer. The requirements engineer manipulates the goals,
and makes decisions on appropriate solutions to these goals.
This may be appropriate for late-phase RE, but not for the
early phase.

By the end of the early-phase, the stakeholders would
have made the major decisions that affect their strategic
interests. Requirements engineers and developers can then
be given the responsibility to fill in the details and to realize
the system.

One consequence of the earlyAate phase distinction is
that intentionality is harder to extract and incorporate into
a model in the early phase than in the late phase. Stake-
holder interests and concerns are typically not readily ac-
cessible. The approach adopted in i* is to introduce the
notion of intentional dependencies to provide a level of ab-
straction that hides the internal intentional contents of an
actor. The Strategic Dependency model provides a useful
characterization of the relationships among actors that is at
an intentional level (as opposed to non-intentional activities
and flows), without requiring the modeller to know much
about the actors’ internal intentional dispositions. Only
when one needs to reason about alternative configurations
would one need to make explicit the goals and criteria for
such deliberations (in the Strategic Rationale model). Even
here, the model of internal intentionality is not assumed
to be complete. The model typically contains only those
concerns that are voiced by the stakeholders in order for
them to achieve the changes they desire.

Multi-lateral intentional relationships. In modelling
the embedding of a system in organizational environments,
it is necessary to describe dependencies that the system
has on its environment (human agents and possibly other

232

systems), as well as the latter’s dependencies on the sys-
tem. When the system does not live up to the expectations
of agents in its environment, the latter may fail to achieve
certain goals. The reverse can also happen. During early-
phase RE, one needs to reason about opportunities and
vulnerabilities from both perspectives. Both the system
and its environment are usually open to redesign, within
limits. When opportunities or vulnerabilities are discov-
ered, further changes can be introduced on either side to
take advantage of them or to mitigate against them. A
modelling framework for the early-phase thus needs to be
able to express multi-lateral intentional relationships and to
support reasoning about their consequences.

In most requirements frameworks, the requirements
models are interpreted prescriptively. They state what a
system is supposed to do. This is appropriate for late-phase
RE. Requirements documents are often used in contrac-
tual settings - developers are obliged to design the systems
in order to meet the specifications. Once the early-phase
decisions have settled, a conversion from the multi-lateral
dependency model to a unilateral prescriptive model for the
late-phase can be made.

Distributed intentionality. Another distinctive feature
of the early-phase subject matter is that the multiple ac-
tors in the domain all have their own intentionality. Ac-
tors exercise intentionality (e.g., they pursue goals) in the
course of their daily routines. Actors have multiple, some-
times conflicting, sometimes complementary goals. The
introduction of a computer system may make certain goals
easier to achieve and others harder to achieve, thus per-
turbing the network of strategic dependencies. Differ-
ent system-and-environment configurations can therefore
be seen as different ways of re-distributing the pattern of
intentionality5. The boundaries may shift (the responsibil-
ity for achieving certain goals may be delegated from some
agents to other agents, some of which may be computer
systems), but the actors remain intentional. The process
of system-and-environment redesign does not solve all the
problems (i.e., does not (completely) reduce intentional el-
ements, such as goals, to non-intentional elements, such as
actions). It merely rearranges the terrain in which problems
appear and need to be addressed.

In contrast, in late-phase RE and in the rest of system
development, one does attempt to fully reduce goals to
implementable actions.

Means-ends reasoning. In order to model and support
reasoning about “why”, and to help come up with alterna-
tive solutions, some form of means-ends reasoning would
appear necessary. However, a relatively weaker form of
reasoning than customarily used in goal-oriented frame-
works is needed. This is because of the higher degree of
incompleteness in early phase RE. The emphasis is on mod-
elling stakeholders’ rationales. Alternative solutions may
be put forth as suggestions, but it is the stakeholders who
decide. The modelling may proceed both “upwards” and
“downwards” (from means to ends or vice versa). There is
no definitive ‘‘t~p” (since there may always be some higher
goal) nor “bottom” (since there is no attempt to purge in-

5Hence the name i*.

tentionality entirely). It is the stakeholders’ decision as
to when the issues have been adequately explored and a
sufficiently satisfactory solution found.

The type of reasoning support desired is therefore closer
to those developed in issue-based information systems, ar-
gumentation frameworks, and design rationales (e.g., [101
[30] [26] [25]). The i* approach is an adaptation of a
framework developed for dealing with non-functional re-
quirements [7], which draws on these earlier frameworks.

Organizational actors. In modelling organizational en-
vironments, a richer notion of actor is needed. i* differ-
entiates actors into agents, roles, and positions [39]. In
late-phase requirements engineering, where the focus is on
specifying behaviours rather than intentional relationships,
such distinctions may not be as significant. Viewpoints
has been recognized as an important topic in requirements
engineering (e.g., [29]). In the early phase, the need to
treat multiple viewpoints involving complex relationships
among various types of actors is even more important.

4 Related work

In the requirements modelling area, the need to model
the environment is well recognized (e.g., [4] [19] [231).
Organization and enterprise models have been developed
in the areas of organizational computing (e.g., [l]) and
enterprise integration (e.g., [9]). However, few of these
models have considered the intentional, strategic aspects
of actors. Their focus has primarily been on activities
and entities rather than on goals and rationales (the “what”
rather than the “why”).

A number of requirements engineering frameworks have
introduced concepts of agents or actors, and employ goal-
oriented techniques. The framework of [5] uses multiple
models to model actors, objectives, subject concepts and
requirements separately, and is close in spirit to the i*
framework in many ways. The WinWin framework of [2]
identifies stakeholder interests and links them to quality re-
quirements. The notion of inquiry cycle in [3 11 is closely
related to the early-phase RE notion, but takes a scenarios
approach. The KAOS framework [12] [35] for require-
ments acquisition employs the notions of goals and agents,
and provides a methodology for obtaining requirements
specifications from global organizational goals.

However, these frameworks do not distinguish between
the needs of early-phase vs. late-phase RE. For example,
most of them assume a global perspective on goals, which
are reduced, by requirements engineers, in a primarily top-
down fashion, fully to actions. These may be contrasted
with the notion of distributed intentionality in i*, where
agents are assumed to be strategic, whose intentionality are
only partially revealed, who are concerned about oppor-
tunities and vulnerabilities, and who seek to advance or
protect their strategic interests by restructuring intentional
relationships.

233

5 Conclusions
Understanding “why” has been considered an important

part of requirements engineering since its early days [32].
Frameworks and techniques to explicitly support the mod-
elling of and reasoning about agents’ goals and rationales
have recently been developed in RE. In this paper, it was
argued that making a distinction between early-phase and
late-phase RE could help clarify the ways in which these
concepts and techniques could be applied to different RE
activities.

The i* framework was given as an example in which
agent- and goal-oriented concepts and techniques were
adapted to address some of the special needs of early-phase
RE.

The proposal to use a modelling framework tailored
specifically to early-phase RE and a separate framework for
late-phase RE implies that a linkage between the two kinds
of framework is needed [40]. As with other phases in the
software development life cycle, the relationship between
early and late phase RE is not strictly sequential or even
temporal. Each phase generates and draw on a certain kind
of knowledge, which needs to be maintained throughout
the life cycle for maximum benefit [24] [20] [28]. The ap-
plication of knowledge-based techniques to early-phase RE
could potentially bring about a more systematic approach
to this often ad hoc, under-supported phase of system de-
velopment.

Preliminary assessments of the usefulness of i* mod-
elling in a real setting have been positive [3] . Supporting
tools and usage methodologies are being developed in an
on-going project [42].

Acknowledgments
The author gratefully acknowledges the many helpful

suggestions from anonymous referees, Eric Dubois, Brian
Nixon, and Lawrence Chung, as well as on-going guid-
ance from John Mylopoulos, and financial support from
the Information Technology Research Centre of Ontario,
and the Natural Sciences and Engineering Research Coun-
cil of Canada.

References
[I] A. J. C. Blythe, J. Chudge, J.E. Dobson and M.R. Strens,

ORDIT: a new methodology to assist in theprocess of elicit-
ing and modelling organizational requirements. Proc. Con-
ference on Organizational Computing Systems, Milpitas
CA, 1993. pp. 216-227.

[Z] B. Boehm and H. In, Aids for Identifying Conflicts Among
Quality Requirements, IEEE Software, March 1996.

[3] L. Briand, W. Melo, C. Seaman and V. Basili, Character-
izing and Assessing a Large-scale Software Maintenance
Organization, Proc. 17th Int. Con$ Software Engineering.
Seattle, WA. 1995.

[4] J. A. Bubenko, Information Modeling in the Context of
System Development, Proc. IFIE 1980, pp. 395-41 1.

[5] J. A. Bubenko, Extending the Scope of Information Mod-
eling, Proc. 4th Int. Workshop on the Deductive Approach
to Information Systems and Databases, Lloret-Costa Brava,
Catalonia, Sept. 20-22, 1993, pp. 73-98.

[6] J. A. Bubenko, Challenges in Requirements Engineering,
Proc. 2nd IEEE Int. Symposium on Requirements Engineer-
ing, York, England, March 1995, pp. 160-162.

[7] K. L. Chung, Representing and Using Non-Functional
Requirements for Information System Development: A
Process-Oriented Approach, Ph.D. Thesis, also Tech. Rpt.
DKBS-TR-93-1, Dept. of Comp. Sci., Univ. of Toronto,
June 1993.

[SI L. Chung, B. Nixon and E. Yu, Using Non-Functional Re-
quirements to Systematically Support Change, 2nd ZEEE
Int. Symp. on Requirements Engineering (RE’95), York,
England, March 1995.

[9] CIMOSA - Open Systems Architecture for CIM, ESPRIT
Consortium AMICE, Springer-Verlag 1993.

[lo] J. Conklin and M. L. Begeman, gIBIS: A Hypertext Tool
for Explanatory Policy Discussions, ACM Transactions on
Office Information Systems, 6(4), 1988, pp. 303-331.

[Il l B. Curtis, H. Krasner and N. Iscoe, A Field Study of the
Software Design Process for Large Systems, Commwzica-
tions of the ACM, 31(11), 1988, pp. 1268-1287.

[12] A. Dardenne, A. van Lamsweerde and S. Fickas, Goal-
Directed Requirements Acquisition, Science of Computer
Programming, 20, 1993, pp. 3-50.

[13] E. Dubois, J. Hagelstein, E. Lahou, E Ponsaert and A. Ri-
faut, A Knowledge Representation Language for Require-
ments Engineering, Proc. IEEE, 74 (lo), Oct. 1986, pp.
1431 -1444.

[141 E. Dubois, A Logic of Action for Supporting Goal-Oriented
Elaborations of Requirements, Proc. 5th International
Workshop on Software SpeciJcation and Design, Pittsburgh,
PA, 1989, pp. 160-168.

[15] Ph. Du Bois, The Albert II Language - On the Design and
the Use of a Formal SpeciJcation Language for Require-
ments Analysis, Ph.D. Thesis, Department of Computer
Science, University of Namur, 1995.

[16] M. S. Feather, Language Support for the Specification and
Development of Composite Systems, ACM Trans. Prog.
Lang. and Sys. 9, 2, April 1987, pp. 198-234.

[171 S. Fickas and R. Helm, Knowledge Representation and Rea-
soning in the Design of Composite Systems, IEEE Trans.
So). Eng., 18,6, June 1992, pp. 470-482.

[181 O.C.Z. Gotel and A.C.W. Finkelstein, An Analysis of the
Requirements Traceability Problem, Proc. ZEEE Int. Con.
on Requirements Engineering, Colorado Springs, April
1994, pp. 94-101.

234

[19] S. J. Greenspan, J. Mylopoulos, and A. Borgida, Capturing
More World Knowledge in the Requirements Specification,
Proc. Int. Con$ on Software Eng., Tokyo, 1982.

[20] S. J. Greenspan, J. Mylopoulos and A. Borgida, On For-
mal Requirements Modeling Languages: RML Revisited,
(invited plenary talk), Proc. 16th Int. Con$ Software Engi-
neering, May 16-21 1994, Sorrento, Italy, pp. 135-147.

[21] J. Grudin, Why CSCW Applications Fail: Problems in the
Design and Evaln of Organizational Interfaces, Proc. Con-
ference on Computer-Supported Cooperative Work 1988,
pp. 85-93.

[22] M. Hammer and J. Champy, Reengineering the Corpora-
tion: A Manifesto for Business Revolution, HarperBusiness,
1993.

[23] M. Jackson, System Development, Prentice-Hall, 1983.

[24] M. Jarke, J. Mylopoulos, J. W. Schmidt and Y. Vassiliou,
DAIDA: An Environment for Evolving Information Sys-
tems, ACM Trans. Information Systems, vol. 10, no. 1, Jan
1992, pp. 1-50.

[25] J. Lee, A Decision Rationale Management System: Cap-
turing, Reusing, and Managing the Reasons for Decisions,
Ph.D. thesis, MIT, 1992.

[26] A. MacLean, R. Young, V. Bellotti andT. Moran, Questions,
Options, and Criteria: Elements of Design Space Analysis,
Human-Computer Interaction, vol. 6, 1991, pp. 201-250.

1271 J. Mylopoulos, A. Borgida, M. Jarke andM. Koubarakis, Te-
10s: Representing Knowledge about Information Systems,
ACMTrans. Info. Sys., 8 (4), 1991.

[28] J. Mylopoulos, A. Borgida and E. Yu, Representing Soft-
ware Engineering Knowledge, Automated Software Engi-
neering, to appear.

[29] B. Nuseibeh, J. Kramer and A. Finkelstein, Expressing the
Relationships Between Multiples Views in Requirements
Specification, Proc. 15th Int. Con$ on Software Engineer-
ing, Baltimore, 1993, pp. 187-196.

[34] A. Van Lamsweerde, R. Darimont and Ph. Massonet,
The Meeting Scheduler Problem: Preliminary Definition.
Copies may be obtained from Prof. Van Lamsweerde,
Universite Catholique de Louvain, Unite d’hfomatique,
Place Sainte-Barbe, 2, B- 1348 Louvain-la-Neuve, Belgium.
(avl @info.ucl.ac.be)

[35] A. Van Lamsweerde, R. Darimont and Ph. Massonet, Goal-
Directed Elaboration of Requirements for a Meeting Sched-
uler: Problems and Lessons Learnt, Proceedings of 2nd
IEEE Int. Symposium on Requirements Engineering, York,
England, March 1995, pp. 194-203.

[36] E. Yu, Modelling Organizations for Information Systems
Requirements Engineering, Proceedings of First IEEE Sym-
posium on Requirements Engineering, San Diego, Calif.,
January 1993, pp. 34-41.

[37] E. Yu and J. Mylopoulos, Understanding Why in Require-
ments Engineering - with an Example, Workshop on System
Requirements: Analysis, Management, and Exploitation,
SchloR Dagstuhl, Saarland, Germany, October 4-7, 1994.

[38] E. Yu and J. Mylopoulos, Understanding ‘Why’ in Software
Process Modelling, Analysis, and Design, Proc. 16th Int.
Con$ on Sofhvare Engineering, Sorrento, Italy, May 1994,
pp. 159-168.

[39] E. Yu, Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, also Tech. Report DKBS-TR-
94-6, Dept. of Computer Science, University of Toronto,
1995.

[40] E. Yu, P. Du Bois, E. Dubois and J. Mylopoulos, From
Organization Models to System Requirements - A ‘Coop-
erating Agents’ Approach, Proc. 3rd Int. Con$ on Coop-
erative Information Systems (CoopIS-95), Vienna, Austria,
May 1995, pp. 194-204.

[41] E. Yu and J. Mylopoulos, From E-R to ‘A-R’ - Modelling
Strategic Actor Relationships for Business Process Reengi-
neering, Int. Journal of Intelligent and Cooperative Infor-
mation Systems, vol. 4, no. 2 & 3, 1995, pp. 125-144.

[42] E. Yu, J. Mylopoulos and Y. Lesperance, AI Models for
Business Process Reengineering, IEEE Expert, August

[30] C. Potts and G. Bruns, Recording the Reasons for Design 1996, pp. 16-23.
Decisions, Proc. 10th Int. Con$ on Software Engineering ,
1988, pp. 418-427.

[31] C. Potts, K. Takahashi and A. Anton, Inquiry-Based Re-
quirements Analysis, IEEE Software, March 1994, pp. 21-
32.

[32] D. T. Ross and K. E. Shoman, Structured Analysis for Re-
quirements Definition, IEEE Trans. Soft. Eng., Vol. SE-3,
No. 1, Jan. 1977.

[33] H. A. Simon, The Sciences of the Artijcial, 2nd ed., Cam-
bridge, MA: The MIT Press, 1981.

235

